Compressed sensing for longitudinal MRI: An adaptive-weighted approach.
نویسندگان
چکیده
PURPOSE Repeated brain MRI scans are performed in many clinical scenarios, such as follow up of patients with tumors and therapy response assessment. In this paper, the authors show an approach to utilize former scans of the patient for the acceleration of repeated MRI scans. METHODS The proposed approach utilizes the possible similarity of the repeated scans in longitudinal MRI studies. Since similarity is not guaranteed, sampling and reconstruction are adjusted during acquisition to match the actual similarity between the scans. The baseline MR scan is utilized both in the sampling stage, via adaptive sampling, and in the reconstruction stage, with weighted reconstruction. In adaptive sampling, k-space sampling locations are optimized during acquisition. Weighted reconstruction uses the locations of the nonzero coefficients in the sparse domains as a prior in the recovery process. The approach was tested on 2D and 3D MRI scans of patients with brain tumors. RESULTS The longitudinal adaptive compressed sensing MRI (LACS-MRI) scheme provides reconstruction quality which outperforms other CS-based approaches for rapid MRI. Examples are shown on patients with brain tumors and demonstrate improved spatial resolution. Compared with data sampled at the Nyquist rate, LACS-MRI exhibits signal-to-error ratio (SER) of 24.8 dB with undersampling factor of 16.6 in 3D MRI. CONCLUSIONS The authors presented an adaptive method for image reconstruction utilizing similarity of scans in longitudinal MRI studies, where possible. The proposed approach can significantly reduce scanning time in many applications that consist of disease follow-up and monitoring of longitudinal changes in brain MRI.
منابع مشابه
Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملA Practical Study of Longitudinal Reference Based Compressed Sensing for MRI
Compressed sensing (CS) is a new signal acquisition paradigm that enables the reconstruction of signals and images from a low number of samples. A particularly exciting application of CS is Magnetic Resonance Imaging (MRI), where CS significantly speeds up scan time by requiring far fewer measurements than standard MRI techniques. Such a reduction in sampling time leads to less power consumptio...
متن کاملFrames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملProspective acceleration of diffusion tensor imaging with compressed sensing using adaptive dictionaries
PURPOSE Diffusion MRI requires acquisition of multiple diffusion-weighted images, resulting in long scan times. Here, we investigate combining compressed sensing and a fast imaging sequence to dramatically reduce acquisition times in cardiac diffusion MRI. METHODS Fully sampled and prospectively undersampled diffusion tensor imaging data were acquired in five rat hearts at acceleration factor...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 42 9 شماره
صفحات -
تاریخ انتشار 2015